Missense Mutation in Fam83H Gene in Iranian Patients with Amelogenesis Imperfecta
نویسندگان
چکیده
BACKGROUND Amelogenesis Imperfecta (AI) is a disorder of tooth development where there is an abnormal formation of enamel or the external layer of teeth. The aim of this study was to screen mutations in the four most important candidate genes, ENAM, KLK4, MMP20 and FAM83H responsible for amelogenesis imperfect. METHODS Geneomic DNA was isolated from five Iranian families with 22 members affected with enamel malformations. The PCR amplifications were typically carried out for amplification the coding regions for AI patients and unaffected family members. The PCR products were subjected to direct sequencing. The pedigree analysis was performed using Cyrillic software. RESULTS One family had four affected members with autosomal dominant hypocalcified amelogenesis imperfecta (ADHPCAI); pedigree analysis revealed four consanguineous families with 18 patients with autosomal recessive hypoplastic amelogenesis imperfecta (ARHPAI). One non-synonymous single-nucleotide substitution, c.1150T>A, p. Ser 342Thr was identified in the FAM83H, which resulted in ADHCAI. Furthermore, different polymorphisms or unclassified variants were detected in MMP20, ENAM and KLK4. CONCLUSION Our results are consistent with other studies and provide further evidence for pathogenic mutations of FAM83H gene. These findings suggest different loci and genes could be implicated in the pathogenesis of AI.
منابع مشابه
Mutation Screening of ENAM, KLK4, MMP20 and FAM83H Genes among the Members of Five Iranian Families Affected with Autosomal Recessive Hypoplastic Amelogenesis Imperfecta
Amelogenesis Imperfectas (AIs) are clinically and genetically heterogeneous conditions characterized by a wide range of clinical features. These abnormalities of enamel formation are categorized into three main groups, hypoplastic, hypomaturation and hypocalcified with different modes of inheritance such as autosomal recessive (AR), autosomal dominant (AD) and X-lined recessive (XLR). In spite ...
متن کاملComputational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta
Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...
متن کاملNovel missense mutation of the FAM83H gene causes retention of amelogenin and a mild clinical phenotype of hypocalcified enamel.
OBJECTIVE Amelogenesis imperfecta (AI) is a group of clinically and genetically heterogeneous inherited conditions, causing alterations in the structure of enamel and chemical composition of enamel matrix during development. The objective of this study was to compare the clinical, radiographic, histological and immunohistochemical phenotypes of subjects affected with hypocalcified AI from three...
متن کاملAmelogenesis imperfecta: genotype-phenotype studies in 71 families.
Amelogenesis imperfecta (AI) represents hereditary conditions affecting the quality and quantity of enamel. Six genes are known to cause AI (AMELX, ENAM, MMP20, KLK4, FAM83H, and WDR72). Our aim was to determine the distribution of different gene mutations in a large AI population and evaluate phenotype-genotype relationships. Affected and unaffected family members were evaluated clinically and...
متن کاملFAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta.
Amelogenesis imperfecta (AI) is a collection of diverse inherited disorders featuring dental-enamel defects in the absence of significant nondental symptoms. AI phenotypes vary and are categorized as hypoplastic, hypocalcified, and hypomaturation types. Phenotypic specificity to enamel has focused research on genes encoding enamel-matrix proteins. We studied two families with autosomal-dominant...
متن کامل